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ABSTRACT

The problem of designing a stationary Gaussian noise pro-

cess of fixed variance so as to optimally mask the possible

presence of a given additive stationary Gaussian signal process

is considered. A sub-optimal solution is obtained by minimizing

the divergence distance between the noise and signal-plus-noise

processes. Recursive time and frequency domain expressions for

the divergence are derived in terms of successive auto-regressive

approximations of the processes. For short observation times,

the minimal divergence masking problem may then be solved by

the unconstrained minimization of a convex - and recursively

computable - function in the time domain. For long observation

times, the problem reduces to that of minimizing the asymptotic

divergence rate. This problem may be solved in the frequency

domain by straight-forward algebraic techniques. A number of

examples are given which illustrate the methodology.
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I. Introduction

In this report we consider some novel aspects of the

problem of detecting a Gaussian process in additive Gaussian

noise. Let the integer N>l be given and let a discrete

stationary Gaussian process s(t) (the signal process) be

specified by its mean and covariance function on the interval

t = 1, 2, . . , N. We are to determine -- under a mean square

energy constraint -- the statistics of the Gaussian noise

process m(t) (the masker process) on the interval 1, 2, .. , N

which maximizes an observers probability of error in the

binary hypotheses test: masker process vs. masker process

plus signal process. We refer to this problem as the Gaussian

masking problem. The solution to this problem is of practical

interest for the efficient design of jamming signals. It

also enables a worst case analysis of detection performance

for Gaussian signals where the noise spectrum is not specified

in advance.

The explicit maximization of the probability of error

expression for this problem is computationally burdensome,

even for small N. As an alternative, we obtain the masker

process which minimizes the divergence distance measure

(1,2] between the masker and masker plus signal processes.

While this minimal divergence masker (MDM) solution is in
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general sub-optimal, we emphasize it here for the following

two reasons:

(1) it offers the advantage of analytical and

computational simplicity

(2) it is shown in [3] that for large N and small

signal/masker variance ratios, the probability

of error, Pe' is given asymptotically by

1 00 2
= exp(-x /2) dxPe fV__ 2

where J is the divergence between the m(t) and

m(t)+s(t) processes. Thus, the MDM solution

corresponds to the optimal solution for this case.

Section IIgives some definitions necessary for the

succeeding development. In Section iii, recursive time and

frequency domain expressions for the divergence between

arbitrary multivariate stationary Gaussian time series are

given (Theorem 1). These expressions are in terms of the

successive auto-regressive (AR) approximations (time domain)

and corresponding AR spectral approximations (frequency domain)

of the processes. Although our primary motivation for deriving

these expressions is their applicability to the MDM solution

of the masking problem, these expressions have intrinsic interest.

The time domain expression is related to Akaike's information
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criterion [4]. It is particularly convenient computationally

since it may be evaluated efficiently using the multivariate

Levinson algorithm [5]. The frequency domain expression

is a generalization of expressions for the asymptotic diver-

gence rate given in Peferences 6-9. For completeness a new

and simpler derivation of the latter expression based on the

convergence properties of the AR spectral approximation is

given in Theorem.2.

In Section IV, we apply the above representations to

the MDM solution of the Gaussian masking problem. It is shown

in Theorem 3 that for finite sample sizes (N<oo) this problem

may be solved in the time domain by the unconstrained mini-

mization of a function of N-1 variables which has a unique

local minimum (which is its global minimum). The MDM solution

is then illustrated graphically for a number of numerical

examples.

The asymptotic case (N-oo) is analyzed in Section V

where it is shown that the MDM solution corresponds to the

minimization of the asymptotic divergence rate between m(t)

and m(t)+s(t). The unique solution to this problem is obtained

in the frequency domain by straight-forward variational tech-

niques (Theorem 4). It is also shown (Theorem 5) that the mean

and discrete spectral component of s(t) is irrelevant to the

solution of the asymptotic masking problem.
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II. Preliminary Definitions

Let X1and X2 be two real random vectors with mutually

absolutely continuous probability measures and respective

density functions f () and f2 (X). Let A1 , 2 (X) =

log[f l(X)/f 2 (X) denote the log-likelihood function. The

directed divergences, 1(1,2) and 1(2,1) and the divergence,

J(l,2) are then defined by

1(1,2) = E[AI, 2]

f." "/- fl1(X)AI1,2 (X)dX (l.a)

1(2,1) = E 2 [A 2 , 1 ] (l.b)

J(l,2) 1 (1,2) + 1(2,1) (2)

where Ek[-] denotes the expectation under hypotheses k.

These measures of statistical separability were first

introduced by Jeffreys [Il and have found wide applicability

to problems of feature extraction [Il and optimal signal

design [2]. 1(1,2) is also referred to as the relative entropy

or Kullback-Liebler Number of X1 with respect to X2 and may

be interpreted as the mean information gained from the obser-

vation X for discrimination in favor of hypothesis 1.

4
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For the case where the observations are Gaussian with

respective mean vectors and covariance matrices Ek' 1(1,2)

is given by ([1, p. 189).

1(1,2) = log 12-1 + h tr (1 -

+ tr 21 (-1--2) (- 1 2)T. (3)

For the case of interest here where the observations

consist of N samples from one of two possible stationary

Gaussian processes, recursive expressions are derived for

1(1,2) which are more computationally efficient than (3) and

are of particular value in the context of the masking problem.

These expressions involve AR approximations to the processes.

Definitions of the requisite quantities are briefly summarized

below.

Consider two M-variate discrete time stationary

Gaussian processes iXt,kj (k = 1,2; t=O, ±1, ±2, . . .) with

means Mk and matrix covariance functions 2k() =

Ek t+,k - k ( tk - Mk)T]. Let E (n=l,2 )... bek --n~~ -M ) x,k -n ',"

the block toeplitz matrix defined by

5



... ._

c 0 I T l I . . . TC (n- 1)
Sk ( 0 ) Sk £(1)Cjn1

I * I .

(1 * I * I

- ------- - --- - - --

Cjk(n-l) 2 k(n-2) 1, C C(0)
~k~n2k

where E--n ,k is positive definite for all n. Define Z n,k

to be the matrix obtained by replacing the submatrix elements

Ck(2) by = + ddT where d = M2 - M1 .

Let Sk(A) denote the M x M power spectral matrix of

process k, given by

1 Sk00=C (Z) e-iXk, -7r<X<7 (5)00

2£= -

Define Sk(A) to be the spectral matrix of the process with

covariance function _(Z), i.e.

(X)= () + ddT 6(,) (6)

6

ME



Let x denote either process 1 or 2 and let

x
-nn

denote n successive observations of the process. Define

the following random variables:

I Mk for n=l

x k = (7)

Ek = [ Ix n- l] for n=2,3,...

n,=x -x (8)

Xn,k is the filtered estimate under hypothesis k of xk -n

given the observation Xn- 1 and e-n,k is the corresponding

error process. We also define Bn k ' N Tk] and

en,k = tr Rn, k respectively as the n-th step error covariance

and mean square error under hypothesis k.

The (n-l)th order AR representation of the error

process is then defined by

n-i

E= kjn (xn- -N-O = -Ln,k (9)

j=0O n -

k=l,2
i n=l, 2, 3, ...

7
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where Ibj, Mk  (j=0,l,...,n-l) are the set of (n-1)th order

partial auto-regressive coefficient matrices of process k

and b(k) = I without loss of generality. Define the M x Mn
-O,n

matrix Bnk as

-n,Bk O,n l,n n-l,n "

Similarly the (n-l)th order AR approximation

of the power spectrum is defined by

s M_ n  I()-i R Mk-Tr*5- 1 X- < 7T (10)
Sn,k~l 2- k -n,k[I' -

where
n-i b (k) e-ix-j (1

-n, k~ l  E -j,n (i

j=0

is the transfer function of the auto-regressive filter

defined by (9). S (2k) may be shown to be the spectrum of•-n, k

the "most random" process whose covariance function matches

that of process k on the lag interval [-n+l, n-l] [I]

III. Time and Frequency Domain Representations for the

Directed Divergence

Let f k (N) denote the joint density of N successive

observations under hypothesis k. The N-sample directed

divergence, IN(l, 2 ), and N-sample divergence, JN( 1 ,2) are then

8



defined by analogy with (1) and (2) as

IN(1,2 ) = E1 [A, 2 (2N)] (12)

I = IN(1, 2 ) + IN(2,1) . (13)

The following theorem provides recursive formulas for the

evaluation of (12) and (13).

Theorem 1. The N-sample directed divergence IN(1 ,2) has

the following auto-regressive representations:

1. Time domain

1 (1,2) 2 + tr B T R -
N 2 E I -n,2-n,l an,2 -n,2

n= 1

log In1 (14)

2. Frequency domain

N
N (1,2) - 4+/$ [+(S-- -2L)N 2 - Tf' +  tral(X) S,(X))

-T n=1
lgI S n l (X)I

Slog In, 21M) IdX (15)

Proof: We first derive (14). Let fk(x nJXnl) denote the

conditional density of xn given Xn-1 under hypothesis k.

A1 ,2 (Xn) may be expressed recursively as

9



A1,2(X) = A1 , 2 (_Xn-l)+ log If1(n nl)/f2(Ln XKn -1)]

from which it follows that

In (1,2) = In(1,2) + An, n=1,2,.
nn-i n

where 10=0 and

[log f(--) - log f 2 (Xl)] , n=l

El~ logg f 2l

A=El~lOg f l(-xnI~nl ) - log f2(XinlXn-)], n>l

Substituting

f (.Xn l) (2T) -M/21R k -
k-~ nn-n,k --nk

expR C

into the above gives
A hE T R -i C R -An lE n, 2 -n, 2 -n2 -n, 1 -n,l1--Enl

-log (111nl1/IRn2)=- M - h log(lRnlI/JR n2l )

+ E[ n2 -n,2 -n2]

where the expectation appearing on the right of (16) may

be evaluated as

10



T -1

1 n,2 Rn,2

n-i (2) nl () T -
E1  j (x: -M l) - ( 0 b ) Rn 2

j=0 -=1- (T

b in --i - ,n

t - nl b(2) TI(2)T -i1
=tr Ff n- (2) E ( ) (X. RL[i=o j=0 -in 11 ¢--i-M1)-n-j-M-1)J!--jn -n,21

n-i n-= (2) T (2)T i+ tr~i h. dd b
t =-=in -- bjn -n,2

-n,I
= tr i= = bi Cllj-i) + dd b.~ R

T -i
= tr B n,2 n 1 Bn,2 Rn,2

The first part of the theorem, (14), follows from the latter

result and (16).

We now derive (15). Let xt again represent either

process 1 or 2 and denote its mean by M and its spectrum

by 2(X). Let k be fixed and define S( ) = S()

+ (M- (). Let n>O be fixed and consider the

process

(k,n)=n-1  (k) n-i (k) - -m(k))
j=0 -j n j=0 - '  ..

t=O,±l,±2, ....

ii

t
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The spectrum of yt (kn) is given by

S (k,n)x A give by 8AA

-Yn' 1 ()+ (M -k (M - n

fk(X) ") 1 n, k(

Applying Parseval's theorem and (10) gives

Ey(k'n)T R - 1 _ytE , k,n) y(kn)T
S rnk t J-i

=t Rn k S(k
'n) ()dX

S-n,k-
-11"

iT

=trfR i (X S( A (X) d
t n,k -n,k S n, k

n-1

iT

Frm (9)wkh,n letin txn:j )

j=0 -3 , -n,k

12
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I
Letting Xn=Xn,1 and k be alternately 1 or 2 gives

El[Eni RnlI  nl]-- -7rf 1(,n1 d=.,,
l IT

-iT. E1L n2 -n2 -n2j §1- -2~ d (8

Substituting (18) into (16) and the expression for IN(1 ,2) gives

iTN(1,2)= I - I-% lll
' 2= [tr(1 (A) Sn2  (X)) -M log ln2jdA.

To show that

log logISi (X)IdX , (19)

note that Snl X) is the spectrum of the (n-l)th order

AR process Z defined by

n- 1
n-i b() = t t=0,±1,±2, (20)-jn Z - '
j=0

where 4 is a sequence of identically distributed-t

uncorrelated random variables with
E[It _Lt-I= Enl '  t=0'±l'-2'..."

Lets-y denote the covariance matrix of m successive

observations of Zt and let Rmy be the associated mth step

error covariance. We have [12]

13



IRmy :l--Em I / l m - l , y l ml,..

However, from (20),

R m<n

Rny=

R ni m>n.

It follows from the above and a result in [13], pg. 66 that

logIRj= urn logjRmy = 1 logiSy(A) idX

7 l log Snl() I dX

which is 
(19).

We note that the relationship between the divergence

and linear predictive filtering for arbitrary (not necessarily

stationary) Gaussian processes was first shown by Schweppe

[14]. Equation (14) may be considered to be a special case

of Schweppe's result when applied to the stationary case.

The primary value of (14) is that it enables the

efficient computation of IN (1,2) and JN(
1 '2) recursively

by application of the Levinson algorithm which generates

Bn i and Rn' i in terms of Bn R andC i

The general multivariate version involves the solution

14



of both a forward and backward estimation problem and is

described in (5,15]. Note that (14), when implemented with

the Levinson algorithm, requires operations on MxM matrices.

This compares with the direct evaluation of (3) which requires

operations on MN x MN matrices.

The Asymptotic Case

For large N, more useful measures of statistical

separation than (12) and (13) are the (asymptotic) entropy

rate and divergence rate [ 6 -9 J defined respectively by

R (1,2) = lim IN(1, 2 )/N (21)
IN--00O

R (1,2) = lim JN(1, 2 )/N. (22)
N-.oo

For completeness we use the result (15) and the convergence

property of the AR spectral approximation to obtain an alterna-

tive derivation of a theorem, first stated (without proof) by

Pinsker [6]. A more complicated proof based on the triangular

factorization of i21 in (3) is provided in [7]. For convenience,

we state and prove the theorem for the scalar case. The

generalization to the multivariate case is straight-forward.

Theorem 2. Let {x tl} and {x t2 } of Section II be scalar,

zero-mean processes with respective spectral densities S1 )

and S2 (A) where S 1 ) is bounded and s2 () is continuous and

strictly positive on -1r:?:ir. Then

15



RI(1,2) = T(1,2)

where

T (1, 2) 7T fJ [S (xs 2 M-1log (S (\)S2 (X ))j dX. (23)

The proof of (23) given below utilizes the result

that if {gn(x)} is a sequence of non-negative uniformly

integrable functions' on [a,b] with lim gn(X) = g(x) (a.e.),

then

=imfb gn(W dx g(x) dx (24)
n-00 a a

Proof. From (15) we have

RI (1,2) = nlim S ( )-l-log S (A)S- ( ) I dX.
n-oo f n2 1l n2 J

For the logarithmic component of the above expression we have

lim -L log Sni( ) dX = lim log Rni
n-oo n- ni

____ni [Iqni [
= lim log Ini lim log n

n-.00 I n-l, i n-ao n

= lT log Si(X)dX

1 A sequence of non-negative functions {g (x)} is said to
be uniformly integrable on [a,b] if for E>O , there exists
a 6>0 such that for all nJ A gn(x)dx<e for any set
AC~a,b] with measure m(A)<.

16



where to obtain the last result we have again utilized

the theorem on p. 66 of [13].

It remains to be shown that

limf 7S X)S1(X)dX 7T Sl 1c)S 2 1 (L)dX (25)
n--o0o T 1 n I

We note that

lrn S (X)S- M)= 1 for all X (26)
n--+oO

and

-1 it = 1 for all n (27)

where (26) follows from the convergence property of the AR

spectral approximation and (27) is identical with (17).

Equations (26) and (27) imply that the sequence gn(M

= S2 ()/S n2(I)is uniformly integrable on [-r, Tr]. To see

this, let 8 be an arbitrarity small positive number and let

En = IX:ign(X) -i<8} •

It follows from (26) that m(E n ) = 27-a n where lim a = 0.
nn-n n

For any set AC[0,2n] we then have

17



fA gn(')d Jn gn (X)dX +fC gn(X)dXgn~ ~ E l- ~ n

nn

=f- gn(G)d + f gn(X)dX -f gn (X)dX

n

_ (1+a)m(A) + 2Tr - (1-8) (2Tr-a n )

_< (1+8)m(A) + 2n8 + a
n

Now, let the E of the uniform integrability definition be

given. It follows from the last inequality that there is an

N such that for n>N , fAgn (X)dX<s if m(A)<6* where

6" = (E-2708-aNN)/(1+a). For each n<N , there will exist a

6n such that fAgn (L)dX<e for all A with m(A)<6 n  ([16] , p. 85).

Choose 6 in the uniform integrability definition to be

6 = min {6*, 61, 62,' SN-I 6 .

The uniform integrability of {g (X)} implies the
n

uniform integrability of SI()Sn1(X) since by the assumptions

of Theorem 2 there exists a C<O0 such that SI(X)/S2(X)<C

for -r5X < r . Then
AS (X ) S - 1 (dX SM- 1(-d

nA 1  n2()d =J S1 )S21 (X) gn

_ C JA gn(X)dX

(25) then follows. This completes the proof of Theorem 2.

18



The following corollary is an extension of (25) and is

used in the treatment of the asymptotic masking problem in Sec-

tion V.

Corollary. Let S1 (X) be bounded and let S2(X) be of the form

q 
2

S 2 (X) = S2,c ) + E di 6(X-X i)
i=l

where S2,c is continuous and strictly positive on[0,27r] and the

sum on the right corresponds to a finite number of discrete

contributions to the spectrum of power d.2 at the frequency

Xi (i=l,2,..q<oo). Then

lim f SI(() -()dX = TJ SI() S2 (X)d . (28)

n s 4 - 1 2,-c

Proof. We have S1 n2 1 2,c ,c whereSn2 n2 I2c.~

gn,c 2 n2 Now

lim = 1 (a.e.)n_- 0 gn,c

and
IT TT q 12-

lim g dX = lim f 2 Ed i  6(X-X)S 2  dX
n o -nn -0 LI i=l lj n2

=27r lim _ di2  (Xi)] = 2

n - oI-li n

The identical argument used for the proof of (25) may now be re-

peated to show that fgnc) , and thus fS1 Sn2}, are uniformly inte-

grable. It then follows that

19



n S S1 2d' =f linS1 S1 S 2
1 d

n _ Sn2 n -l

-1S lim g cdX =J S~ ScdX
J-7~r1 ~ 2c n~ r 0 ic1]

IV. The Minimal Divergence Masker

In the following, we apply the results of Section III

to the MDM solution of the Gaussian masking problem outlined

in the Introduction. Specifically, let the signal process

s(t) be a given scalar stationary Gaussian process with mean

ps and covariance function C (). We wish to hide the possible

presence of s(t) by imbedding it in another stationary

Gaussian process m(t) (the "masker process") which is indepen-

dent of s(t) and has a fixed mean p m and fixed variance V

The optimal solution of the masking problem is provided by

that masker covariance function C (£) on the lag interval

, = 1,2, ...,N-1 which maximizes the probability of error

P in the binary hypotheses test
e

HI: x(t) = m(t) (signal not present)

H 2: x(t) = m(t)+s(t) (signal present)

t=l,2,..,N

where {x(t); t=l,2,...,N1 represents N observations from one

of the two hypotheses and both hypotheses are considered

equally likely.

Letting = (xI, x2 , ... ' xN)T, Lm and MN's denote

N-vectors all of whose components are pm and ps respectively,

20
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and A (XN) = log P2(XN)/PI(XN ) denote the log-likelihood ratio,

we have

Pe 0 Af 2 (A)dA + f 0 Af1 (A)dA] (29)
00

where fi(A) is the density of A under hypotheses i and A is

given by the quadratic form

A(XN) log tr (-[im+ lirN2 LXN (MN,m+M.N,s'

[XN_(MN,m+MN's ) ] T  + tr -_,-I ( N m) (XNN s) T

N,l ( -N N

where EN,l :-N,m ' -N,2 -EN,m +  N,s and EN,m and

EN,s are the analogues of (4).

The complicated nature of the densities f. (A) make
1

the minimization of Pe with respect to Cm () (k=l,2,..,N-l)

numerically difficult. A sub-optimal solution to this problem

may be obtained by determining that masking covariance which

minimizes the divergence JN(1 ,2) = E2 (A)-E 1 (A) between the

masking and masking plus signal processes. This minimization

-- involving only first moments of A -- is considerably

simpler than that required for (29). However, the possibly

complex nature of the (N-l) dimensional surface of JN(1,2)

considered as a function of CM (1), CM (2), ... , CM (N-1))

may still make the minimization difficult - particularly for

large N. Fortunately, the latter issue is of little concern

21



as the function has only one local minimum (which is the unique

global minimum). This is shown in the following theorem

which is valid for arbitrary Gaussian vectors.

Theorem 3. Let Y (the masker) and Y (the signal) be-m -s
two independent N-dimensional Gaussian vectors with

means a and a and positive definite covariance-m -s

matrices K and K where am, a and K are fixed and K is-m -s -s -s -m

allowed to vary. Let = Y mand Y2 = -m+Y s. Then the

divergence J(l,2) 4 J(K ) between Y1 and Y2 is a strictly

convex function of K m, i.e. for 0<6<1 and arbitrary covariances

Km' K' with K # K':m m-m -M

J(eK + (1-e)K')<OJ(K ) + (1-6)J(K ) (30)-m m -m

Proof: The proof of (30) involves the simultaneous diagonali-

zation of a judicious choice of two matrices associated with

K, K' and K . Let K and K' be fixed and consider the func-
-m -s -m -m

tion

D(e) = J(Km + (1-e) K) , 0<e<l.
-m

2 2
Our approach will be to show that d D(M)/de >0 for all

0 E(0,1). We have from (2) and (3) that

22



( = s T[(K+Ks) + K 1A

+ tr +Ks - Km (K +Ks-21

= K [(Km+Ks)- + K-

+ tr K - (K+K

Thus

D(6) = DI(e) + D2(e)

where

DI(0) = a [(H(O)+Ks - + H -I(e)aT

D2 (8) = tr [H-I(e)K s - (H()+Ks)-IKs]

and

H(e) = 8K (1-) m

Let 00 with 0<0 <1 be fixed and apply a non-singular

linear transformation T = T(o01 such that

(!1(o)) .T = A (31)

T K T = 1 (32)

where A is a diagonal matrix. For arbitrary 8, let 5(6),

D1(e), 5 2 (8), N(e), is and K5 denote D(O), D1 (6), D2 (8), H(6),
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a and K respectively, under the transformation T(80)._s -s0

From the invariance of the divergence to non-singular linear

transformations it follows that

U(6) = D(e) , 0<6<1

and in particular that

d2 = d2(D 1 + D2)/dO = d 2D/d82 (33)

0<0<1

Evaluating d2 Dl/de2 by repeated application of the inverse

ratrix differentiation rule gives

d 2 51/de
2 = VT(H+KS) 1V +U T H-1 U

where

(-K -m (H+K) --
- -r-rn -- S S

( = (H- a

Since H and H+Ks are symmetric and positive definite, it

follows that H and (Hf+Ks )- are symmetric and positive

definite. Thus

d D/dO 2>0 , 0<6<1 . (34)

Similarly, differentiation of D2 gives

=tr{(K R) 2 4 (ff+R 3]
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Evaluating the latter expression at 0o and using

(31) and (32) gives
d 2  -K)/d8216=0 tr (Km-R) 2 R (35)

20 rn-rn

-3 -3
where R = A - (I+A) is a diagonal, positive definite
matrix and (.Km- )2 is non-negative definite. we now show

that

d2 D2/d8218= 0 >0 (36)

Evaluating (35) gives N

d 2 52/d621_ = Vii ii

0 i=l

where and v.. are the i-th diagonal elements of (K -K ) 2

and R respectively.

Since i = (kiek0) 2>0 where k. and ke are
- e (ki e-ie i ,e ie

the elements of Km' K respectively, and by hypotheses

K K'-- it follows that at least one of the 8ii>0 and (36)-m

follows.

We conclude from (33), (34) and (36) that

d 2 D/d021= 0 0 >0 (37)

Since 00 is arbitrary, (37) is true for all 0 with 0<0<1.

Now consider the function g(e) = D(6)-OD(1)-(I-6)D(0).
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We have g"(8)>0 for 0<e<1, g(8) continuous for 0:<8_:1, and

g(0) = g(l) = 0. It follows from these properties that

g(e)<0 for 0<0<1, or, equivalently,

D(8) < 6D(0) + (1-0)D(1)

which is (30). This completes the proof of Theorem 3.

We now return to the MDM problem as formulated for

the stationary case.

We note that the divergence, JN(1 ,2) between the

m(t) and m(t) + s(t) processes may be expressed using (2)

and (14) as

N

j~~ (12 N + eN 2 In;m+sZnm Bn;m+s n;m+s

+ B n~(Unm+ En) B' e-I

+-n;m(-- --ns --n;m n;m]

where: --nm and Ens are obtained by adding V2 to each

element of E and E respectively; B and e are the
rim -ns -n; m n; m

(n-l)th order AR parameters associated with m(t); and B
-n;m+s

and e are the (n-l)th order AR parameters associated
n;m+ s

with m(t) + s(t).

From the Yule Walker equations [17]

Bn B'n;m n;m Bn;m n;m
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I

and the above expression simplifies to the following symmetric

form

J(1,2) N B'j e-1

J - n;m+s rim n;m+s n;m+s

+ B E Be-i 1 . (38)-n;m gns -nm n;m]

The MDM process is then specified by the N-1
quantities Cm(1), C (2), . . C m(N-1) which minimize (38).

If this minimization is performed directly on the covariances

{C (£)} it is a problem of constrained optimization in that

the solution must satisfy the positive definiteness constraint
N N^

P, iZj. C m (i-j) > 0 (39)
ilj=l

for any set of numbers (Z1 £Z2' Z. . , £N) not all 0.

Fortunately there exists an alternative parameterization of

m(t) on the interval t=l,2,...,N in terms of which the minimi-

zation of (38) is a problem of unconstrained minimization.

This is the parameterization in terms of (pl,m' P2,m'

PN-l,m ) where p.im is the j-th partial correlation coefficient

of m(t). The major advantage to the latter parameterization

is that, in contrast to (39), the stationarity constraint

on the p j,m is considerably simpler and is given by [17]
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IPj < l j = 1,2, . , N-i . (40)

(38) may be computed recursively in terms of the {p. m

using the Levinson recursion. It may also be shown that

the solution (Pl,m,'' DN-l,m ) which minimizes (38) in the

closed (N-l)-dimensional cube 1P. j1 l (n=l,2,..,N-l) is
j ,m

in the interior of the cube. Since the mapping from

(Cm(1) , ... , Cm(N-1)) to (Pl,m,*.° PN-l,m ) is one-to-one

and continuous, it follows from Theorem 3 that (38) considered

as a function of (plm'''' PN-l,m ) has a unique local minimum

(which is the global minimum) in the region specified by (40).

This minimum may be obtained by standard numerical techniques

for unconstrained minimization.

Numerical Examples.

We illustrate the MDM solutions corresponding to three

different signal processes, s(t). These are:

(a) s(t) = s1(t) where s,(t) is a first order Gauss-Markov

process with mean ps and unit variance, satisfying the difference

equation

sl(t) P jS + [sl(t-l)-pS] + Cl(t) (41)

t=0,±l,±2,
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where 1 (t) is a zero-mean white Gaussian sequence.

(b) st) = s 2 lt) where

s 2 (t) = s1 (t) + Acos (2wft) + Bsin (2 ft) (42)

t=O,+l,+2,

where f= and A and B are zero-mean uncorrelated Gaussian

random variables with Var A = Var B = 1/8.

(c) S(t) = s3(t) where s3(t) is a Gaussian second-order

auto-regressive process with mean p1s and unit variance

satisfying the difference equation

s3 (t) = s + 3/4 s3 (t-l)-P s]- [s 3 (t-2)-lis + E3 (t) (43)

t=O,±l,±2,

where e 3(t) is a zero-mean white Gaussian sequence.

In the following, we illustrate the corresponding

MDM solutions for various values of p s, masking variance

(Vm), and sample size (N). Rather than give these solutions
A

in the time domain (for instance by giving {Cm (), Z=l,2,..N-l),

it is generally more informative to provide them in the

frequency domain in terms of the corresponding (N-l)th order

AR spectral approximations

SN,m() e Nm

j=2
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where eN,m and b j,N j=0,l,...,N-l1 are the AR parameters
jA

corresponding to {C m(0) = V m , C m(1), ... , C M(N-1)}.

Figures 1-3 show the MDM solutions corresponding to

the three illustrative signal processes assuming Vs = 0, N=20

and Vm = 10 (Figs. 1-2) or Vm = 3 (Fig. 3) (the ripples in

Fig. 2 are caused by ringing inherent to the AR spectral

approximation). We note that the MDM spectra are not identical

to the signal spectra and involve a shift of spectral energy

relative to the signal from high to low energy regions. We

refer to this as a "partial whitening" of the MDM. Intuitively,

such an energy allocation is plausible since it allows the

masker to dominate the signal in frequency regions where the

signal is low with little decrease in the masker/signal ratio

in regions where the signal is high.

Figure 4 shows the effect on the MDM of introducing

a non-zero signal mean p. As 1s increases, more masking

energy is concentrated in an impulsive manner in the dc

region of the spectrum. This impulse corresponds in the time

domain to the mean of X (t) being a random variable (with am

variance given by the strength of the impluse). This result

has an obvious intuitive explanation: if, for instance, p s > 0

and the N-sample observation has a high sample mean (e.g., >l m)

the observer must decide whether this is due to the presence
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Fig. 1. Masker spectrum corresponding to zero-mean signal
process defined by equ.ation (41).
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Fig. 2. Masker spectrum corresponding to zero-mean signal
process defined by equation (42).
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Fig. 4. Masker spectra corresponding to signal process defined
by equation (43) with .= 0.0, 0.1, 0.25 and 0.5.
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of the signal or to the absence of the signal and the circum-

stance that the (random) mean of X m(t) for this sample was

particularly high; conversely, if the sample mean is low,

this may be due to the absence of the signal or to the

presence of the signal and a mean of X m(t) which is particularly

low.

Figures 5 and 6 show the effect of increasing N on

the MDM for s(t) = sl(t) and Ps = . Note (Fig. 5) that

the energy in the DC region decreases as N goes from 10 to 40.

Figure 6 shows the optimal masking auto-correlation fR (k); 9=0,1,..,

N-l} for N = 5, 10, 20, and 40. These results suggest that

asymptotically (N-00), the MDM solution for pso converges

to that for p = 0. That this is indeed the case in general

(with a similar result valid for the discrete component of

the signal spectrum), is shown in the next section, which

treats the asymptotic masking problem.

V. The Asymptotic Masking Problem

Asymptotically (N-00) the MDM problem becomes one of

determining the m(t) which minimizes the divergence rate

R (1,2) between the m(t) and m(t) + s(t) processes. We refer

to the masking process which minimizes Ra(1,2) as the asymptotic

minimal divergence masker (AMDM). Our starting point for the

analysis of the asymptotic case is the frequency domain analog

35
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Fig. 5. Masker spectra corresponding to signal process defined
by equation (41) with ps = 0.5 and N = 10, 20, 40.
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of (38) which is obtained using (15) and (17) as

IT __ Sm
J (1,2) =-L f mN(  )  47r n=1 -I' Sn;m+s Sn;m n;m

S nm+s j dX (45)Sn; m+sI

where: Sm and S are the spectra of X and Xs , S =S +S
m s m s m+s m s

Sn; m and Sn;m+s are the (n-l)th order AR approximations to

2 2
Sm and SiM+s, and Sm = Sm + Vs (X), Sm+s = Sm + Ss + s( 6 ).

Substituting the expressions for m and 1m+s into (45) gives

N 2 2
JN ( 1 ,

2 )  E 4- S(0 +  S (0
n=1 n;m n;m+s

+ S5  Ss dX (46)

ISn;m n;m+s

Consider the case where p s 0 and the signal spectrum

is of the form
q

Ss( ) = Ss,c () + d2 6(X-X) (47)

i=1

where S (A) denotes the portion of the spectrum continuous on
s,C

[0,2w] and the sum in (47) corresponds to a finite number of

discrete contributions to the spectrum of power d2 at the1

frequency Xi (i=1,2,..,q<oo). (46) then becomes
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iI
2 2q2

(n=l Sn;(0) n,m+s n,m

2 'r[Ss (A) S (A)48
( i) + s~c - s,c

Sn; m+s ( Sn (A)  Sm+ S dX (48)

This is the general frequency domain expression for J (1,2) in
N

the context of the masking problem. The MDM masking solutions

illustrated in Figs. 1-6 are best understood by inspection of

(48).

The following two theorems characterize the AMDM solu-

tion for processes of the form (47) and provide a constructive

method for its generation numerically.

Theorem 4. Let the signal process be zero-mean and have a

continuous spectral density Ss(A) = S s,c() >0. Then in the

class M of continuous positive spectral densities with variance

Vm, there is a unique corresponding AMDM process. Its spectrum

S and divergence rate ' (1,2) satisfy

~~~~Rj1,2)- ( s ___1m^_ 1 s S  Ss ] inf -[S

j(1,2) s dX = sf - dX. (49)- m  Sm+Ss  m M m s

Sm may be obtained to any desired approximation by a straight-

forward numerical procedure.
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Proof. That the AMDM solution - if it exists - satisfies

(49) follows from the result that for any S E Mm

aj(l,2) =lim -1 _7 S S Ss  dX

n-0 47 _ S n;m Sn;m+ s

1 T4  S ss s d  
(50)

which follows from (48) and (25). We now show that there is

a unique Sm e M by the explicit minimization of (50).

To minimize (50), we introduce the Lagrange multiplier

k and the functional (of S and 9.)

4-S S S s s j dX - Sm dX- V) (51)

The critical points of (51) satisfy

S dX = V (52)-7m m

and also satisfy for each X:

S s[(s +Sm ) 2  
-2]

or

s3 2 4 3 2 2
_-i (S + 2 S Sm  = Sm + 2 S S + m 5s (53)

. must be <0 since S and Sm are >0. We now show that for

fixed £<0 and fixed X £ [-7r,7], there is a unique positive

solution Sm;£(X) of (53).
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Consider the graphs of

h£(y) = -i1 S3 _ 2 Ci S2 ys- s y

and

g(y) = y4 + 2 S s y + s2 y 2

for y>0. Since Ss >O , the slope of h I is a positive constant

and hk(0)>0. Now g(O) = 0 <h9.(0). Let 3. be the smallest

positive abscissa where g and h. intersect. Clearly, there

are intersections since g grows faster than h . Now g'(y) is

an increasing function and g'(!,) is necessarily greater than

hj(7£) (= a constant). Since g'>h' for y>-2 ., g>h, for

y >y. Hence, for fixed Z, g and h, intersect at exactly one

point in the right half plane, and there is a unique Sm;9(X) = £

which satisfies (53) for each X. Moreover, it follows from

the assumed continuity of S( ) in (53) that Sm;£(A) is a

continuous function of X.

In the above manner we have constructed by standard

algebraic methods the family of continuous spectral densities

Sm;£(X), parameterized by L, which satisfy the constraint (53).

We now determine the unique Z=t such that S ,;=S also satisfies
m;k m

the constraint (52). Note that for 0>k 2> I, 1992 > yI Hence

S m;2 () >S m;1(X) for all A, and
S2

J IT S dX > - r dA.
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Thus the 9 for which Sm;N satisfies (52) is unique. may be

found by a straight-forward binary search: start with k1 and

Z2>91 such that

J S 9 2 dX > V, J S 1d < Vm 2 I ; 1

Determine £3 and 94 such that
3 4

f m; < Vm'< S s  4dX > vm

and k4 - t3 = h(912- 1. ". . and so on. The sequence of inter-

vals [Z 2n+i' 92n+2] converges to T. The search process may be

terminated when an T is obtained for which 7f Sm-dX V to

any desired degree of approximation. Sm;- is then the desired

approximation to S . This completes the proof of Theorem 4.

Corollary. R 1(1,2) is a monotonically decreasing function of

Y = Vm/V

Proof. Let ps () = S ()/V s and pm(A) = Sm(X)/V m denote the

normalized signal and masker spectral densities. We have

S s S s dr f Ps PS d
T- Sm+S s 7 f:E m - SpdA

2
_T d
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Since the last expression is a monotonically decreasing function

of y, the corollary then follows from (49).

Theorem 5. Let the signal process have mean psi 0 and a

spectrum q

i M (s- + 2 i 6XX) (54)
i= 1

as in (47). Then the corresponding AMDM process is in the class

M and is the AMDM process corresponding to the zero-mean signal

process with spectrum S sc(A) (i.e. the mean of the signal and

the discrete component of its spectrum do not effect its AMDM).

Proof. Consider masker processes of the form
q

S M() = S (M) + C 2 6(X) + E 2 6(X-Ai) (55)m m'c 0 1
i=l1

2where Sm'c is the continuous spectral component, e06() is a

discrete component corresponding to ps ;tO , and the sum on the

right represents discrete components corresponding to the dis-q 
2crete components of S. Let V =

s m, = IM'c m modi=0
be the partioning of the masker variance between the discrete

and continuous portions of the spectrum. Assuming that each
2

of the ci are >0, we have for the corresponding AR approxima-

tions
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A A

lir S (0) = lir S n,m( i )n00 n,m nnm
A

lir S (X.) =o0 (56)
n-0 n,m+s 1

i 1, 2, . q

From (48), (56) and (28) we have

Rj(1, 2 ) = lim JN(1,2) - JNI(1,2)
N-00

4-1 lim S_ c s'c

4r n a [ n,m Sn,m+s

1f 7[SS C -Sn 'sc dX (57)ITS mc S m'c +S Sc

q

For fixed V mc =V - i,' the AMDM masker is then

i=0

fully characterized by Theorem 4 and is obtained by minimizing

(57) with respect to the continuous component Sm'c under the

constraintf_ Smc = Vmc . Denote the corresponding minimal

divergence rate by Rj(i1,2;Vm c) . However, by the corollary to

Theorem 4, Ri (1,2;Vm'c) is a monotonically decreasing function

of Vm, c. Thus for the AMDM solution, Vm,c = Vm, Vmd = 0 and

the theorem follows.

Remark - The fact that the AMDM masker spectrum has no dis-

crete components even if such components are present in the

signal, is best motivated by the following observation[6]:
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consider two Gaussian processes with spectra

= Si x) + a 2 =1,2) ,

where the a. >0 for i=l,2;j=1,2,...,q<oo. Then the asymptotic1,)

(N-00) probability of error for distinguishing between the two pro-

cesses is >0 if and only if SIc(X) = S2 c (A) (a.e.). The fact that

asymptotically non-singular detection depends on the equality

of Slc and S2c but not on the equality of the {a1 j) and {a2 j},

suggests that the AMDM place asymptotically vanishing energy

in the discrete spectral components so as to maximize the

similarity of the masker and masker plus signal continuous

spectral components, as is indicated by Theorem 5.
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